Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Existence and Asymptotic Behavior of Solutions for Hénon Type Equations

This paper is concerned with ground state solutions for the Hénon type equation −∆u(x) = |y|αup−1(x) in Ω, where Ω = B(0, 1) × Bn−k(0, 1) ⊂ R and x = (y, z) ∈ R × Rn−k. We study the existence of cylindrically symmetric and non-cylindrically symmetric ground state solutions for the problem. We also investigate asymptotic behavior of the ground state solution when p tends to the critical exponent...

متن کامل

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

Mildly degenerate Kirchhoff equations with weak dissipation: global existence and time decay

We consider the hyperbolic-parabolic singular perturbation problem for a degenerate quasilinear Kirchhoff equation with weak dissipation. This means that the coefficient of the dissipative term tends to zero when t → +∞. We prove that the hyperbolic problem has a unique global solution for suitable values of the parameters. We also prove that the solution decays to zero, as t → +∞, with the sam...

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Continuous Dynamical Systems - B

سال: 2021

ISSN: 1553-524X

DOI: 10.3934/dcdsb.2021091